A maximum entropy approach to learn Bayesian networks from incomplete data
نویسندگان
چکیده
This paper addresses the problem of estimating the parameters of a Bayesian network from incomplete data. This is a hard problem, which for computational reasons cannot be effectively tackled by a full Bayesian approach. The workaround is to search for the estimate with maximum posterior probability. This is usually done by selecting the highest posterior probability estimate among those found by multiple runs of Expectation-Maximization with distinct starting points. However, many local maxima characterize the posterior probability function, and several of them have similar high probability. We argue that high probability is necessary but not sufficient in order to obtain good estimates. We present an approach based on maximum entropy to address this problem and describe a simple and effective way to implement it. Experiments show that our approach produces significantly better estimates than the most commonly used method.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملBayesian Networks and the Imprecise Dirichlet Model Applied to Recognition Problems
This paper describes an Imprecise Dirichlet Model and the maximum entropy criterion to learn Bayesian network parameters under insu cient and incomplete data. The method is applied to two distinct recognition problems, namely, a facial action unit recognition and an activity recognition in video surveillance sequences. The model treats a wide range of constraints that can be specified by expert...
متن کاملImproving parameter learning of Bayesian nets from incomplete data
This paper addresses the estimation of parameters of a Bayesian network from incomplete data. The task is usually tackled by running the Expectation-Maximization (EM) algorithm several times in order to obtain a high log-likelihood estimate. We argue that choosing the maximum log-likelihood estimate (as well as the maximum penalized log-likelihood and the maximum a posteriori estimate) has seve...
متن کاملMaximum Entropy Density Estimation with Incomplete Presence-Only Data
We demonstrate a generalization of Maximum Entropy Density Estimation that elegantly handles incomplete presence-only data. We provide a formulation that is able to learn from known values of incomplete data without having to learn imputed values, which may be inaccurate. This saves the effort needed to perform accurate imputation while observing the principle of maximum entropy throughout the ...
متن کاملLearning Bayesian Networks from Incomplete Data
Much of the current research in learning Bayesian Networks fails to eeectively deal with missing data. Most of the methods assume that the data is complete, or make the data complete using fairly ad-hoc methods; other methods do deal with missing data but learn only the conditional probabilities, assuming that the structure is known. We present a principled approach to learn both the Bayesian n...
متن کامل